Parallel Multilevel Restricted Schwarz Preconditioners with Pollution Removing for PDE-Constrained Optimization

نویسندگان

  • Ernesto E. Prudencio
  • Xiao-Chuan Cai
چکیده

We develop a class of V-cycle type multilevel restricted additive Schwarz (RAS) methods and study the numerical and parallel performance of the new fully coupled methods for solving large sparse Jacobian systems arising from the discretization of some optimization problems constrained by nonlinear partial differential equations. Straightforward extensions of the one-level RAS to multilevel do not work due to the pollution effects of the coarse interpolation. We then introduce, in this paper, a pollution removing coarse-to-fine interpolation scheme for one of the components of the multi-component linear system, and show numerically that the combination of the new interpolation scheme with the RAS smoothed multigrid method provides an effective family of techniques for solving rather difficult PDE-constrained optimization problems. Numerical examples involving the boundary control of incompressible Navier-Stokes flows are presented in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel algebraic multilevel Schwarz preconditioners for a class of elliptic PDE systems

Algebraic multilevel preconditioners for algebraic problems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a po...

متن کامل

Parallel algebraic multilevel Schwarz preconditioners for elliptic PDE systems∗

Algebraic multilevel preconditioners for linear systems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a point-...

متن کامل

Robust Multilevel Restricted Schwarz Preconditioners and Applications

We introduce a multi-level restricted Schwarz preconditioner with a special coarse-to-fine interpolation and show numerically that the new preconditioner works extremely well for some difficult large systems of linear equations arising from some optimization problems constrained by the incompressible Navier-Stokes equations. Performance of the preconditioner is reported for parameters including...

متن کامل

Parallel coupled and uncoupled multilevel solvers for the Bidomain model of electrocardiology

The Bidomain model describes the spread of electrical excitation in the anisotropic cardiac tissue in terms of the evolution of the transmembrane and extracellular electric potentials, v and ue respectively. This model consists of a non-linear parabolic reaction-diffusion partial differential equation (PDE) for v, coupled with an elliptic linear PDE for ue. The evolution equation is coupled thr...

متن کامل

Terascale Optimal PDE Simulations (TOPS), An Enabling Technology Center Scientific Discovery Through Advanced Computing: Integrated Software Infrastructure Centers

iii 1 Background and Significance 1 2 Preliminary Studies 3 2.1 PDE Time Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 PDE Nonlinear Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 PDE-constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Linear Solvers . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007